Varieties of elements of given order in simple algebraic groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Classification of Finite Groups of Order p2q2

‎Suppose G is a group of order p^2q^2 where p>q are prime numbers and suppose P and Q are Sylow p-subgroups and Sylow q-subgroups of G, ‎respectively‎. ‎In this paper‎, ‎we show that up to isomorphism‎, ‎there are four groups of order p^2q^2 when Q and P are cyclic‎, ‎three groups when Q is a cyclic and P is an elementary ablian group‎, ‎p^2+3p/2+7 groups when Q is an elementary ablian group an...

متن کامل

On connected automorphism groups of algebraic varieties

Let X be a normal projective algebraic variety, G its largest connected automorphism group, and A(G) the Albanese variety of G . We determine the isogeny class of A(G) in terms of the geometry of X . In characteristic 0, we show that the dimension of A(G) is the rank of every maximal trivial direct summand of the tangent sheaf of X . Also, we obtain an optimal bound for the dimension of the lar...

متن کامل

Representations of Algebraic Groups and Principal Bundles on Algebraic Varieties

In this talk we discuss the relations between representations of algebraic groups and principal bundles on algebraic varieties, especially in characteristic p. We quickly review the notions of stable and semistable vector bundles and principal G-bundles , where G is any semisimple group. We define the notion of a low height representation in characteristic p and outline a proof of the theorem t...

متن کامل

Jordan Groups and Automorphism Groups of Algebraic Varieties

The first section of this paper is focused on Jordan groups in abstract setting, the second on that in the settings of automorphisms groups and groups of birational self-maps of algebraic varieties. The appendix contains formulations of some open problems and the relevant comments. MSC 2010: 20E07, 14E07

متن کامل

A Characterization of the Suzuki Groups by Order and the Largest Elements Order

One of the important problems in group theory is characterization of a group by a given property, that is, to prove there exist only one group with a given property. Let  be a finite group. We denote by  the largest order of elements of . In this paper, we prove that some Suzuki groups are characterizable by order and the largest order of elements. In fact, we prove that if  is a group with  an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2018

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2018.05.002